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Performance Analysis and Optimisation

➢ How much can I optimise my application?

• Can it actually be done?

• What would the effort/gain ratio be?

➢ Where can I gain time?

• Where is my application wasting time?

➢ Why is the application spending time there?

• Algorithm, implementation or hardware?

• Data access or computation?

➢ How can I improve the situation?

• In which step(s) of the design process?

• What additional information do I need?

MAQAO Performance Analysis and 

Optimization Tool

Algorithm

Implementation

Source Code Parallelisation

Compilation

Execution



3

A Multifaceted Problem

➢ Pinpointing the performance bottlenecks

➢ Identifying the dominant issues

• Algorithms, implementation, parallelisation, …

➢ Making the best use of the machine features

• Complex multicore and manycore CPUs

• Complex memory hierarchy

➢ Finding the most rewarding issues to be fixed

• 40% total time, expected 10% speedup

▪ ➔ TOTAL IMPACT: 4% speedup

• 20% total time, expected 50% speedup

▪ ➔ TOTAL IMPACT: 10% speedup

=> Need for dedicated and complementary tools

MAQAO Performance Analysis and 

Optimization Tool

?
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Motivating Example

MAQAO Performance Analysis and 

Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

Code of a loop representing ~10% walltime

Source code and associated issues:
do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses
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MAQAO:

Modular Assembly Quality Analyzer and Optimizer

➢ Objectives:

• Characterizing performance of HPC applications

• Focusing on performance at the core level

• Guiding users through optimization process

• Estimating return of investment (R.O.I.)

➢ Characteristics:

• Modular tool offering complementary views

• Support for Intel x86-64 and Xeon Phi

▪ ARM under development

• LGPL3 Open Source software

• Developed at UVSQ since 2004

• Binary release available as static executable

MAQAO Performance Analysis and 

Optimization Tool



6

Success stories:

Optimization of Industrial and Academic HPC Applications

➢ QMC=CHEM (IRSAMC)

• Quantum chemistry

• Speedup: > 3x

▪ Moved invocation of function with identical parameters out of loop body 

➢ Yales2 (CORIA)

• Computational fluid dynamics

• Speedup: up to 2,8x

▪ Removed double structure indirections 

➢ Polaris (CEA)

• Molecular dynamics

• Speedup: 1,5x – 1,7x

▪ Enforced loop vectorisation through compiler directives

➢ AVBP (CERFACS)

• Computational fluid dynamics 

• Speedup: 1,08x – 1,17x

▪ Replaced division with multiplication by reciprocal

▪ Complete unrolling of loops with small number of iterations

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO History

➢ 2004: Begun development

• Focusing on Intel Itanium 
architecture

• Analysis  of assembly files

➢ 2006: Transition to Intel x86-64

➢ 2009: Binary analysis support

➢ 2010: First version of 
decremental analysis

➢ 2012: Support of KNC 
architecture 

➢ 2014 : Profiling features

➢ 2015: First version of ONE 
View

➢ 2017: Prototype support of 
ARM architecture
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Partnerships

➢ MAQAO was funded by UVSQ, Intel and CEA (French department of 
energy) through Exascale Computing Research (ECR) and the 
French Ministry of Industry through various FUI/ITEA projects (H4H, 
COLOC, PerfCloud, ELCI, MB3, etc...)

➢ Provides core technology to be integrated with other tools:

• TAU performance tools with MADRAS patcher through MIL 
(MAQAO Instrumentation Language) 

• ATOS bullxprof with MADRAS through MIL

• Intel Advisor

• INRIA Bordeaux HWLOC

➢ PeXL ISV also contributes to MAQAO:

• Commercial performance optimization expertise

• Training and software development

MAQAO Performance Analysis and 

Optimization Tool
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Analysis at Binary Level

➢ Advantages of binary analysis:

• Compiler optimizations increase the distance between the 
executed code and the source

• Source code instrumentation may prevent the compiler from 
applying some transformations

➢ We want to evaluate the “real” executed code: What You Analyse 
Is What You Run

➢ Main steps:

• Reconstruct the program structure

• Relate the analyses to source code

▪ A single source loop can be compiled as multiple assembly loops

▪ Affecting unique identifiers to loops

MAQAO Performance Analysis and 

Optimization Tool

Loop

L255@file.c

Loop 1 Loop 2 Loop 3

Loop 4

Loop 5

Peel/Prolog

Main

Tail/Epilog

ASM

Source
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MAQAO Main Features

➢ Binary layer

• Builds internal representation from binary

• Allows patching through binary rewriting

➢ Profiling

• LProf: Lightweight sampling-based profiler

• VProf: Instrumentation-based value profiler

➢ Static analysis

• CQA (Code Quality Analyzer): Evaluates the quality of the binary code 
and offers hints for improving it

• UFS (Uops Flow Simulator): Cycle-accurate CPU engine simulator

➢ Dynamic analysis

• DECAN (DECremental Analyzer): Modifies the application to evaluate 
the impact of groups of instructions on performance

➢ Performance view aggregation module

• ONE View: Invokes the modules and produces reports aggregating 
their results

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO Main Structure

MAQAO Performance Analysis and 

Optimization Tool

Disassembly

Application

Analysis

Lua API

Patching

LProf

CQA
Internal 

Representation

+ Sampling

+ Machine 

model

ONE View

Reports

Loop 42 50%

vectorised

Potential x1.2

speedup

VProf

DECAN
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MAQAO Methodology

➢ Decision tree

MAQAO Performance Analysis and 

Optimization Tool

Profiling

Loops of interest

Analysis

CPU oriented

Code Quality Analysis

Value Profiling

Differential analysis

Data access oriented

Data access 

characterization

Differential analysis
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MAQAO LProf: Lightweight Profiler

➢ Goal: Lightweight localization of application hotspots

➢ Features:

• Sampling based

• Access to hardware counters for additional information

▪ Can also access OS timers for unsupported architectures

• Results at function and loop granularity

➢ Strengths:

• Non intrusive: No recompilation necessary

• Low overhead

• Agnostic with regard to parallel runtime

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO CQA: Code Quality Analyzer

➢ Goal: Assist developers in 
improving code performance

➢ Features:

• Evaluates the quality of the 
compiler generated code

• Returns hints and 
workarounds to improve 
quality

• Focuses on loops

▪ In HPC most of the time is 
spent in loops

• Targets compute-bound codes 

➢ Static analysis:

• Requires no execution of the 
application

• Allows cross-analysis

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO CQA Main Concepts

➢ Relies on simplified CPU model

• Allows faster analyses

• More precise but slower analyses available with UFS

➢ Machine model:

• Execution pipeline

• Port throughput

• L1 data access

• Buffers ignored if not UFS

➢ Key performance levers for core level efficiency:

• Vectorising

• Avoiding high latency instructions if possible

• Having the compiler generate an efficient code

• Reorganizing memory layout

MAQAO Performance Analysis and 

Optimization Tool

Same instruction – Same cost

Process up to 

8X (SP) data
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MAQAO CQA Compiler and Programmer Hints 

➢ Compiler can be driven using flags and pragmas:

• Ensuring full use of architecture capabilities (e.g. using flag -
xHost on AVX capable machines)

• Forcing optimization (unrolling, vectorization, alignment…)

• Bypassing conservative behaviour when possible (e.g., 1/X 
precision)

➢ Implementation changes

• Improve data access

▪ Loop interchange

▪ Change loop stride

▪ Reshaping arrays of structures

• Avoid instructions with high latency

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO CQA Application to Motivating Example

MAQAO Performance Analysis and 

Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

Issues identified by CQA 

CQA can detect and provide hints to 

resolve most of the identified issues:
do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses
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MAQAO CQA Application to motivating example

MAQAO Performance Analysis and 

Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar
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MAQAO DECAN: Decremental Analysis

➢ Goal: modify the application to

• Identify cause of bottlenecks

• Estimate associated ROI

➢ Differential analysis: 

• Targets innermost loops

• Transforms loops

• Measure and compare performance of original and transformed 
copy

➢ Transformations

• Remove or modify groups of instructions

• Targets memory accesses or computation

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO DECAN Transformations

➢ Typical transformations:

• FP: only FP arithmetic instructions are preserved

▪ => loads and stores are removed

• LS: only loads and stores are preserved

▪ => compute instructions are removed

• DL1: memory references replaced with global variables ones

▪ => data now accessed from L1

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO DECAN Example

MAQAO Performance Analysis and 

Optimization Tool

FP                   LS

Ref



22

MAQAO DECAN FP and LS Transformations

➢ ROI = FP / LS = 4,1

➢ Imbalance between the two streams 
=> Try to consume more elements inside one iteration.

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO DECAN

Application to Motivating Example

MAQAO Performance Analysis and 

Optimization Tool

REF_NSD   : removing DIV/SQRT instructions provides a 1.5 x speedup 

=> the bottleneck is the presence of these DIV/SQRT instructions

FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup

Conclusion: No room left for improvement here (algorithm bound)

DIV/SQRT 

instructions 

removed

Loads/stores + 

DIV/SQRT instructions 

removed
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MAQAO VProf: Value Profiling 

➢ Value profiling

• Targets loops or functions

• Instrumentation

• Iteration count, loop path uses, function parameters, …

➢ Metrics

• Detection of stable values

• Loop characterisation through number of iterations

➢ Provides leads for code specialisation

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View: Performance View Aggregator

➢ Goal: Automating the whole analysis process

• Invocation of the required MAQAO modules

• Generation of aggregated performance views as HTML or 
XLS files

➢ Report levels of increasing analysis complexities

• Each level includes the analyses of the levels below it

• An experiment directory can be reused for generating a higher 
level report

MAQAO Performance Analysis and 

Optimization Tool

MAQAO analysis modules

ONE-View

Configuration 

file

Application

LProf VProf DECAN CQA

Reports
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ONE View Reports Levels

➢ ONE VIEW ONE

• Requires a single run of the application

• Profiling of the application using LProf

• Static analysis using CQA

➢ ONE VIEW TWO (includes analyses from report ONE)

• Requires 3 or 4 runs on average

• Value profiling using VProf to identify loop iteration count

• Decremental analysis for L1 projection using DECAN

➢ ONE VIEW THREE (includes analyses from report TWO)

• Requires 20 to 30 runs 

• Decremental analyses using all DECAN variants 

• Collects hardware performance events

➢ Scalability

• Require as many additional runs as parallel configurations

• Can be executed in addition of another report

• Profilings using LProf on different parallel configurations

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View: Performance View Aggregator

➢ Main steps:

• Invokes LProf to identify hotspots

• Invokes CQA, VPROF and DECAN  
on loop hotspots

➢ Available results:

• Speedup predictions

• Global code quality metrics 

• Hints for improving performance

• Detailed analyses results

• Parallel efficiency

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Global Summary

➢ Experiment summary

• Characteristics of the machine 
where the experiment took place 

➢ Global metrics

• General quality metrics derived 
from MAQAO analyses

• Global speedup predictions

▪ Speedup prediction depending 
on the number of vectorised 
loops

▪ Ordered speedups to identify 
the loops to optimise in priority

MAQAO Performance Analysis and 

Optimization Tool
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ONE View Global Metrics

➢ Global metrics

• General quality metrics derived from MAQAO analyses

• Global speedup predictions

➢ Potential speedups 

• Speedup prediction depending on the number of optimised loops

• Ordered speedups to identify the loops to optimise in priority

𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = ෍

𝑙𝑜𝑜𝑝𝑠

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝

➢ LProf provides coverage of the loops

➢ CQA and DECAN provide speedup estimation for loops

• Speedup if loop vectorised or without address computation

• All data in L1 cache

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Application Characteristics

➢ Application categorisation

• Time spent in different 
regions of code

➢ Function based profile

• Functions by coverage 
ranges

➢ Loop based profile

• Loops by coverage ranges

➢ Detailed loop based profile

• Loop types by coverage 
ranges

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Application Characteristics

Time Categorisation

➢ Goal: allowing to identify at a glance where time is spent

• Categories based on functions or libraries names

➢ Application

• Main executable

➢ Parallelization

• Threads

• OpenMP

• MPI

➢ System libraries

• I/O operations

• String operations

• Memory management functions (allocation, free)

➢ External libraries

• Specialised libraries such as libm / libmkl

• Application code in external libraries

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View: Functions Profiling

Identifying hotspots

➢ Exclusive coverage

➢ Load balancing across 
threads

➢ Loops nests by functions

MAQAO Performance Analysis and 

Optimization Tool

Single

Outermost

Inbetween

Inbetween

Innermost
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MAQAO ONE View Loop Profiling Summary

Identifying loop hotspots

➢ Vectorisation information

➢ Potential speedups by optimisation

• Clean: Removing address computations

• FP Vectorised: Vectorising floating-point computations

• Fully Vectorised: Vectorising floating-point computations and 
memory accesses

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Loop Analysis Report

High level reports

➢ Reference to the source code

➢ Bottleneck description

➢ Hints for improving 
performance

➢ Reports categorized by 
probability that applying hints 
will yield predicted gain

• Gain: Good probability

• Potential gain: Average 
probability 

• Hints: Lower probability

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Loop Analysis Reports 

Expert View

➢ Low level reports for 
performance experts

• Assembly-level

• Instructions cycles 
costs

• Instructions 
dispatch 
predictions

• Memory access 
analysis

➢ Assembly code

• Highlights groups 
of instructions 
accessing the 
same memory 
addresses

➢ CQA internal metrics

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Thread/Process View

➢ Software Topology

• Nodes list

• Processes by node

• Thread by process

➢ View by thread

• Function profile at the 
thread or process level

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Scalability Reports

➢ Goal: Provide a view of the application scalability

• Profiles with different numbers of threads/processes

• Displays efficiency metrics for application

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Scalability Reports

Application View

➢ Coverage per category

• Comparison of categories for each run 

➢ Coverage per parallel efficiency

• 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙∗𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠

▪ Distinguishing functions only represented in parallel or sequential

• Displays efficiency by coverage

MAQAO Performance Analysis and 

Optimization Tool
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MAQAO ONE View Scalability Reports

Functions and Loops Views

MAQAO Performance Analysis and 

Optimization Tool

Displays metrics for each function/loop

➢ Efficiency

➢ Potential speedup if efficiency=1
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More on MAQAO

➢ MAQAO website: www.maqao.org

• Documentation: www.maqao.org/documentation.html

▪ Tutorials for ONE View, LProf and CQA

▪ Lua API documentation

• Latest release: http://www.maqao.org/downloads.html

▪ Binary releases (2-3 per year)

▪ Core sources

• Publications around MAQAO: 
http://www.maqao.org/publications.html

MAQAO Performance Analysis and 

Optimization Tool

http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html
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MAQAO Team and Collaborators

➢ MAQAO Team

• Prof. William Jalby

• Cédric Valensi, Ph D

• Emmanuel Oseret, Ph D

• Mathieu Tribalat

• Salah Ibn Amar

• Youenn Lebras

• Kévin Camus

➢ Collaborators

• Prof. David J. Kuck

• David Wong, Ph D

• Othman Bouizi, Ph D

• Andrés S. Charif-Rubial, Ph D

• Eric Petit, Ph D

• Pablo de Oliveira, Ph D

➢ Past Collaborators or Team members

• Prof. Denis Barthou

• Jean-Thomas Acquaviva, Ph D

• Stéphane Zuckerman, Ph D

• Julien Jaeger, Ph D

• Souad Koliaï, Ph D

• Zakaria Bendifallah, Ph D

• Tipp Moseley, Ph D

• Jean-Christophe Beyler, Ph D

• Hugo Bolloré

• Jean-Baptiste Le Reste

• Sylvain Henry, Ph D

• José Noudohouennou, Ph D

• Aleksandre Vardoshvili

• Romain Pillot

MAQAO Performance Analysis and 

Optimization Tool
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Thanks for your attention!

Questions ? 

MAQAO Performance Analysis and 

Optimization Tool


