
1

MAQAO

Performance Analysis and Optimization Tool

Cédric Valensi, Emmanuel Oseret

cedric.valensi@uvsq.fr, emmanuel.oseret@uvsq.fr

Performance Evaluation Team, University of Versailles

http://www.maqao.org

MAQAO Performance Analysis and

Optimization Tool

http://www.maqao.org/

2

Performance Analysis and Optimisation

➢ How much can I optimise my application?

• Can it actually be done?

• What would the effort/gain ratio be?

➢ Where can I gain time?

• Where is my application wasting time?

➢ Why is the application spending time there?

• Algorithm, implementation or hardware?

• Data access or computation?

➢ How can I improve the situation?

• In which step(s) of the design process?

• What additional information do I need?

MAQAO Performance Analysis and

Optimization Tool

Algorithm

Implementation

Source Code Parallelisation

Compilation

Execution

3

A Multifaceted Problem

➢ Pinpointing the performance bottlenecks

➢ Identifying the dominant issues

• Algorithms, implementation, parallelisation, …

➢ Making the best use of the machine features

• Complex multicore and manycore CPUs

• Complex memory hierarchy

➢ Finding the most rewarding issues to be fixed

• 40% total time, expected 10% speedup

▪ ➔ TOTAL IMPACT: 4% speedup

• 20% total time, expected 50% speedup

▪ ➔ TOTAL IMPACT: 10% speedup

=> Need for dedicated and complementary tools

MAQAO Performance Analysis and

Optimization Tool

?

4

Motivating Example

MAQAO Performance Analysis and

Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

Code of a loop representing ~10% walltime

Source code and associated issues:
do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses

1
)

H
ig

h
 n

u
m

b
e

r
o

f
s
ta

te
m

e
n

ts

5

MAQAO:

Modular Assembly Quality Analyzer and Optimizer

➢ Objectives:

• Characterizing performance of HPC applications

• Focusing on performance at the core level

• Guiding users through optimization process

• Estimating return of investment (R.O.I.)

➢ Characteristics:

• Modular tool offering complementary views

• Support for Intel x86-64 and Xeon Phi

▪ ARM under development

• LGPL3 Open Source software

• Developed at UVSQ since 2004

• Binary release available as static executable

MAQAO Performance Analysis and

Optimization Tool

6

Success stories:

Optimization of Industrial and Academic HPC Applications

➢ QMC=CHEM (IRSAMC)

• Quantum chemistry

• Speedup: > 3x

▪ Moved invocation of function with identical parameters out of loop body

➢ Yales2 (CORIA)

• Computational fluid dynamics

• Speedup: up to 2,8x

▪ Removed double structure indirections

➢ Polaris (CEA)

• Molecular dynamics

• Speedup: 1,5x – 1,7x

▪ Enforced loop vectorisation through compiler directives

➢ AVBP (CERFACS)

• Computational fluid dynamics

• Speedup: 1,08x – 1,17x

▪ Replaced division with multiplication by reciprocal

▪ Complete unrolling of loops with small number of iterations

MAQAO Performance Analysis and

Optimization Tool

7

MAQAO History

➢ 2004: Begun development

• Focusing on Intel Itanium
architecture

• Analysis of assembly files

➢ 2006: Transition to Intel x86-64

➢ 2009: Binary analysis support

➢ 2010: First version of
decremental analysis

➢ 2012: Support of KNC
architecture

➢ 2014 : Profiling features

➢ 2015: First version of ONE
View

➢ 2017: Prototype support of
ARM architecture

8

Partnerships

➢ MAQAO was funded by UVSQ, Intel and CEA (French department of
energy) through Exascale Computing Research (ECR) and the
French Ministry of Industry through various FUI/ITEA projects (H4H,
COLOC, PerfCloud, ELCI, MB3, etc...)

➢ Provides core technology to be integrated with other tools:

• TAU performance tools with MADRAS patcher through MIL
(MAQAO Instrumentation Language)

• ATOS bullxprof with MADRAS through MIL

• Intel Advisor

• INRIA Bordeaux HWLOC

➢ PeXL ISV also contributes to MAQAO:

• Commercial performance optimization expertise

• Training and software development

MAQAO Performance Analysis and

Optimization Tool

9

Analysis at Binary Level

➢ Advantages of binary analysis:

• Compiler optimizations increase the distance between the
executed code and the source

• Source code instrumentation may prevent the compiler from
applying some transformations

➢ We want to evaluate the “real” executed code: What You Analyse
Is What You Run

➢ Main steps:

• Reconstruct the program structure

• Relate the analyses to source code

▪ A single source loop can be compiled as multiple assembly loops

▪ Affecting unique identifiers to loops

MAQAO Performance Analysis and

Optimization Tool

Loop

L255@file.c

Loop 1 Loop 2 Loop 3

Loop 4

Loop 5

Peel/Prolog

Main

Tail/Epilog

ASM

Source

10

MAQAO Main Features

➢ Binary layer

• Builds internal representation from binary

• Allows patching through binary rewriting

➢ Profiling

• LProf: Lightweight sampling-based profiler

• VProf: Instrumentation-based value profiler

➢ Static analysis

• CQA (Code Quality Analyzer): Evaluates the quality of the binary code
and offers hints for improving it

• UFS (Uops Flow Simulator): Cycle-accurate CPU engine simulator

➢ Dynamic analysis

• DECAN (DECremental Analyzer): Modifies the application to evaluate
the impact of groups of instructions on performance

➢ Performance view aggregation module

• ONE View: Invokes the modules and produces reports aggregating
their results

MAQAO Performance Analysis and

Optimization Tool

11

MAQAO Main Structure

MAQAO Performance Analysis and

Optimization Tool

Disassembly

Application

Analysis

Lua API

Patching

LProf

CQA
Internal

Representation

+ Sampling

+ Machine

model

ONE View

Reports

Loop 42 50%

vectorised

Potential x1.2

speedup

VProf

DECAN

12

MAQAO Methodology

➢ Decision tree

MAQAO Performance Analysis and

Optimization Tool

Profiling

Loops of interest

Analysis

CPU oriented

Code Quality Analysis

Value Profiling

Differential analysis

Data access oriented

Data access

characterization

Differential analysis

13

MAQAO LProf: Lightweight Profiler

➢ Goal: Lightweight localization of application hotspots

➢ Features:

• Sampling based

• Access to hardware counters for additional information

▪ Can also access OS timers for unsupported architectures

• Results at function and loop granularity

➢ Strengths:

• Non intrusive: No recompilation necessary

• Low overhead

• Agnostic with regard to parallel runtime

MAQAO Performance Analysis and

Optimization Tool

14

MAQAO CQA: Code Quality Analyzer

➢ Goal: Assist developers in
improving code performance

➢ Features:

• Evaluates the quality of the
compiler generated code

• Returns hints and
workarounds to improve
quality

• Focuses on loops

▪ In HPC most of the time is
spent in loops

• Targets compute-bound codes

➢ Static analysis:

• Requires no execution of the
application

• Allows cross-analysis

MAQAO Performance Analysis and

Optimization Tool

15

MAQAO CQA Main Concepts

➢ Relies on simplified CPU model

• Allows faster analyses

• More precise but slower analyses available with UFS

➢ Machine model:

• Execution pipeline

• Port throughput

• L1 data access

• Buffers ignored if not UFS

➢ Key performance levers for core level efficiency:

• Vectorising

• Avoiding high latency instructions if possible

• Having the compiler generate an efficient code

• Reorganizing memory layout

MAQAO Performance Analysis and

Optimization Tool

Same instruction – Same cost

Process up to

8X (SP) data

16

MAQAO CQA Compiler and Programmer Hints

➢ Compiler can be driven using flags and pragmas:

• Ensuring full use of architecture capabilities (e.g. using flag -
xHost on AVX capable machines)

• Forcing optimization (unrolling, vectorization, alignment…)

• Bypassing conservative behaviour when possible (e.g., 1/X
precision)

➢ Implementation changes

• Improve data access

▪ Loop interchange

▪ Change loop stride

▪ Reshaping arrays of structures

• Avoid instructions with high latency

MAQAO Performance Analysis and

Optimization Tool

17

MAQAO CQA Application to Motivating Example

MAQAO Performance Analysis and

Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

Issues identified by CQA

CQA can detect and provide hints to

resolve most of the identified issues:
do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses

1
)

H
ig

h
 n

u
m

b
e

r
o

f
s
ta

te
m

e
n

ts

7
)

V
e
c
to

r
v
s
 s

c
a
la

r

18

MAQAO CQA Application to motivating example

MAQAO Performance Analysis and

Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

19

MAQAO DECAN: Decremental Analysis

➢ Goal: modify the application to

• Identify cause of bottlenecks

• Estimate associated ROI

➢ Differential analysis:

• Targets innermost loops

• Transforms loops

• Measure and compare performance of original and transformed
copy

➢ Transformations

• Remove or modify groups of instructions

• Targets memory accesses or computation

MAQAO Performance Analysis and

Optimization Tool

20

MAQAO DECAN Transformations

➢ Typical transformations:

• FP: only FP arithmetic instructions are preserved

▪ => loads and stores are removed

• LS: only loads and stores are preserved

▪ => compute instructions are removed

• DL1: memory references replaced with global variables ones

▪ => data now accessed from L1

MAQAO Performance Analysis and

Optimization Tool

21

MAQAO DECAN Example

MAQAO Performance Analysis and

Optimization Tool

FP LS

Ref

22

MAQAO DECAN FP and LS Transformations

➢ ROI = FP / LS = 4,1

➢ Imbalance between the two streams
=> Try to consume more elements inside one iteration.

MAQAO Performance Analysis and

Optimization Tool

23

MAQAO DECAN

Application to Motivating Example

MAQAO Performance Analysis and

Optimization Tool

REF_NSD : removing DIV/SQRT instructions provides a 1.5 x speedup

=> the bottleneck is the presence of these DIV/SQRT instructions

FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup

Conclusion: No room left for improvement here (algorithm bound)

DIV/SQRT

instructions

removed

Loads/stores +

DIV/SQRT instructions

removed

0
10
20
30
40
50

C
yc

le
s

p
e

r
so

u
rc

e

it
e

ra
ti

o
n

s

Variants

Execution time

Execution time

24

MAQAO VProf: Value Profiling

➢ Value profiling

• Targets loops or functions

• Instrumentation

• Iteration count, loop path uses, function parameters, …

➢ Metrics

• Detection of stable values

• Loop characterisation through number of iterations

➢ Provides leads for code specialisation

MAQAO Performance Analysis and

Optimization Tool

25

MAQAO ONE View: Performance View Aggregator

➢ Goal: Automating the whole analysis process

• Invocation of the required MAQAO modules

• Generation of aggregated performance views as HTML or
XLS files

➢ Report levels of increasing analysis complexities

• Each level includes the analyses of the levels below it

• An experiment directory can be reused for generating a higher
level report

MAQAO Performance Analysis and

Optimization Tool

MAQAO analysis modules

ONE-View

Configuration

file

Application

LProf VProf DECAN CQA

Reports

26

ONE View Reports Levels

➢ ONE VIEW ONE

• Requires a single run of the application

• Profiling of the application using LProf

• Static analysis using CQA

➢ ONE VIEW TWO (includes analyses from report ONE)

• Requires 3 or 4 runs on average

• Value profiling using VProf to identify loop iteration count

• Decremental analysis for L1 projection using DECAN

➢ ONE VIEW THREE (includes analyses from report TWO)

• Requires 20 to 30 runs

• Decremental analyses using all DECAN variants

• Collects hardware performance events

➢ Scalability

• Require as many additional runs as parallel configurations

• Can be executed in addition of another report

• Profilings using LProf on different parallel configurations

MAQAO Performance Analysis and

Optimization Tool

27

MAQAO ONE View: Performance View Aggregator

➢ Main steps:

• Invokes LProf to identify hotspots

• Invokes CQA, VPROF and DECAN
on loop hotspots

➢ Available results:

• Speedup predictions

• Global code quality metrics

• Hints for improving performance

• Detailed analyses results

• Parallel efficiency

MAQAO Performance Analysis and

Optimization Tool

28

MAQAO ONE View Global Summary

➢ Experiment summary

• Characteristics of the machine
where the experiment took place

➢ Global metrics

• General quality metrics derived
from MAQAO analyses

• Global speedup predictions

▪ Speedup prediction depending
on the number of vectorised
loops

▪ Ordered speedups to identify
the loops to optimise in priority

MAQAO Performance Analysis and

Optimization Tool

29

ONE View Global Metrics

➢ Global metrics

• General quality metrics derived from MAQAO analyses

• Global speedup predictions

➢ Potential speedups

• Speedup prediction depending on the number of optimised loops

• Ordered speedups to identify the loops to optimise in priority

𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = ෍

𝑙𝑜𝑜𝑝𝑠

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝

➢ LProf provides coverage of the loops

➢ CQA and DECAN provide speedup estimation for loops

• Speedup if loop vectorised or without address computation

• All data in L1 cache

MAQAO Performance Analysis and

Optimization Tool

30

MAQAO ONE View Application Characteristics

➢ Application categorisation

• Time spent in different
regions of code

➢ Function based profile

• Functions by coverage
ranges

➢ Loop based profile

• Loops by coverage ranges

➢ Detailed loop based profile

• Loop types by coverage
ranges

MAQAO Performance Analysis and

Optimization Tool

31

MAQAO ONE View Application Characteristics

Time Categorisation

➢ Goal: allowing to identify at a glance where time is spent

• Categories based on functions or libraries names

➢ Application

• Main executable

➢ Parallelization

• Threads

• OpenMP

• MPI

➢ System libraries

• I/O operations

• String operations

• Memory management functions (allocation, free)

➢ External libraries

• Specialised libraries such as libm / libmkl

• Application code in external libraries

MAQAO Performance Analysis and

Optimization Tool

32

MAQAO ONE View: Functions Profiling

Identifying hotspots

➢ Exclusive coverage

➢ Load balancing across
threads

➢ Loops nests by functions

MAQAO Performance Analysis and

Optimization Tool

Single

Outermost

Inbetween

Inbetween

Innermost

33

MAQAO ONE View Loop Profiling Summary

Identifying loop hotspots

➢ Vectorisation information

➢ Potential speedups by optimisation

• Clean: Removing address computations

• FP Vectorised: Vectorising floating-point computations

• Fully Vectorised: Vectorising floating-point computations and
memory accesses

MAQAO Performance Analysis and

Optimization Tool

34

MAQAO ONE View Loop Analysis Report

High level reports

➢ Reference to the source code

➢ Bottleneck description

➢ Hints for improving
performance

➢ Reports categorized by
probability that applying hints
will yield predicted gain

• Gain: Good probability

• Potential gain: Average
probability

• Hints: Lower probability

MAQAO Performance Analysis and

Optimization Tool

35

MAQAO ONE View Loop Analysis Reports

Expert View

➢ Low level reports for
performance experts

• Assembly-level

• Instructions cycles
costs

• Instructions
dispatch
predictions

• Memory access
analysis

➢ Assembly code

• Highlights groups
of instructions
accessing the
same memory
addresses

➢ CQA internal metrics

MAQAO Performance Analysis and

Optimization Tool

36

MAQAO ONE View Thread/Process View

➢ Software Topology

• Nodes list

• Processes by node

• Thread by process

➢ View by thread

• Function profile at the
thread or process level

MAQAO Performance Analysis and

Optimization Tool

37

MAQAO ONE View Scalability Reports

➢ Goal: Provide a view of the application scalability

• Profiles with different numbers of threads/processes

• Displays efficiency metrics for application

MAQAO Performance Analysis and

Optimization Tool

38

MAQAO ONE View Scalability Reports

Application View

➢ Coverage per category

• Comparison of categories for each run

➢ Coverage per parallel efficiency

• 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙∗𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠

▪ Distinguishing functions only represented in parallel or sequential

• Displays efficiency by coverage

MAQAO Performance Analysis and

Optimization Tool

39

MAQAO ONE View Scalability Reports

Functions and Loops Views

MAQAO Performance Analysis and

Optimization Tool

Displays metrics for each function/loop

➢ Efficiency

➢ Potential speedup if efficiency=1

40

More on MAQAO

➢ MAQAO website: www.maqao.org

• Documentation: www.maqao.org/documentation.html

▪ Tutorials for ONE View, LProf and CQA

▪ Lua API documentation

• Latest release: http://www.maqao.org/downloads.html

▪ Binary releases (2-3 per year)

▪ Core sources

• Publications around MAQAO:
http://www.maqao.org/publications.html

MAQAO Performance Analysis and

Optimization Tool

http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html

41

MAQAO Team and Collaborators

➢ MAQAO Team

• Prof. William Jalby

• Cédric Valensi, Ph D

• Emmanuel Oseret, Ph D

• Mathieu Tribalat

• Salah Ibn Amar

• Youenn Lebras

• Kévin Camus

➢ Collaborators

• Prof. David J. Kuck

• David Wong, Ph D

• Othman Bouizi, Ph D

• Andrés S. Charif-Rubial, Ph D

• Eric Petit, Ph D

• Pablo de Oliveira, Ph D

➢ Past Collaborators or Team members

• Prof. Denis Barthou

• Jean-Thomas Acquaviva, Ph D

• Stéphane Zuckerman, Ph D

• Julien Jaeger, Ph D

• Souad Koliaï, Ph D

• Zakaria Bendifallah, Ph D

• Tipp Moseley, Ph D

• Jean-Christophe Beyler, Ph D

• Hugo Bolloré

• Jean-Baptiste Le Reste

• Sylvain Henry, Ph D

• José Noudohouennou, Ph D

• Aleksandre Vardoshvili

• Romain Pillot

MAQAO Performance Analysis and

Optimization Tool

42

Thanks for your attention!

Questions ?

MAQAO Performance Analysis and

Optimization Tool

