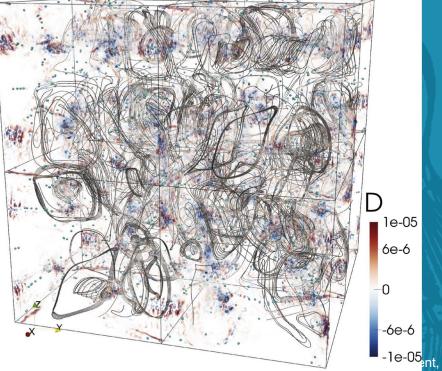
KU LEUVEN

Our Past Experience with Tier-0 at PRACE

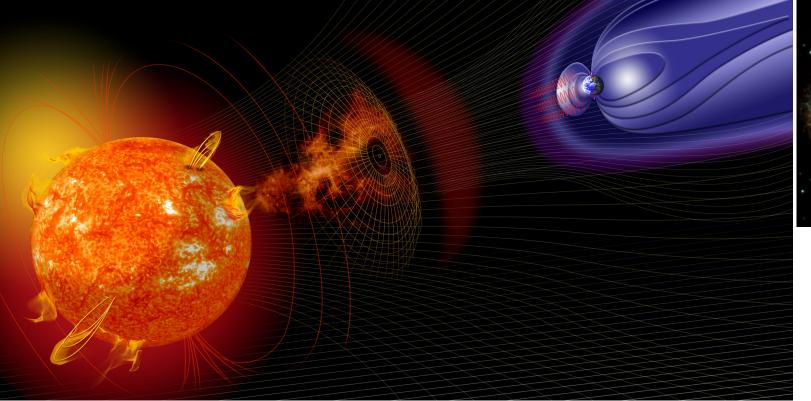
Giovanni Lapenta, Francesco Pucci, Maria Elena Innocenti

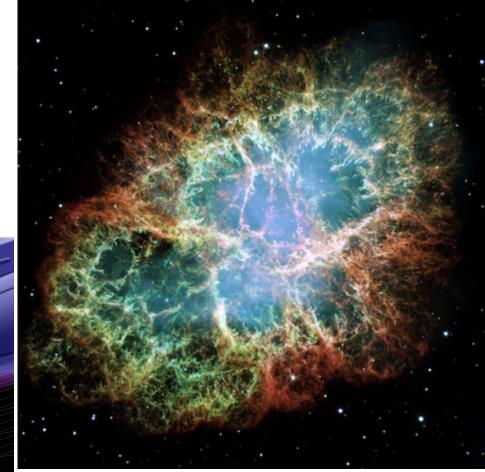
Past Experience – Tier 0

- Fourth call: The Life-cycle of Energy in Space Weather
 - Cineca and CEA
 - Technical: Recommended
 - Scientific: 6, 6, 5
- Sixth call: SWEET: Space Weather Effects on the Earth environmenT
 - Cineca and CEA
 - Technical: Strongly Recommended we worked with them in preparation
 - Scientific: 6, 6, 5
- **Eight call**: Magnetic Reconnection in Three-dimensional Turbulent Configurations
 - Feedback from all centers, selected by LRZ
 - Technical: Strongly Recommended we worked with them during preparation
 - Scientific: 6, 5, 5

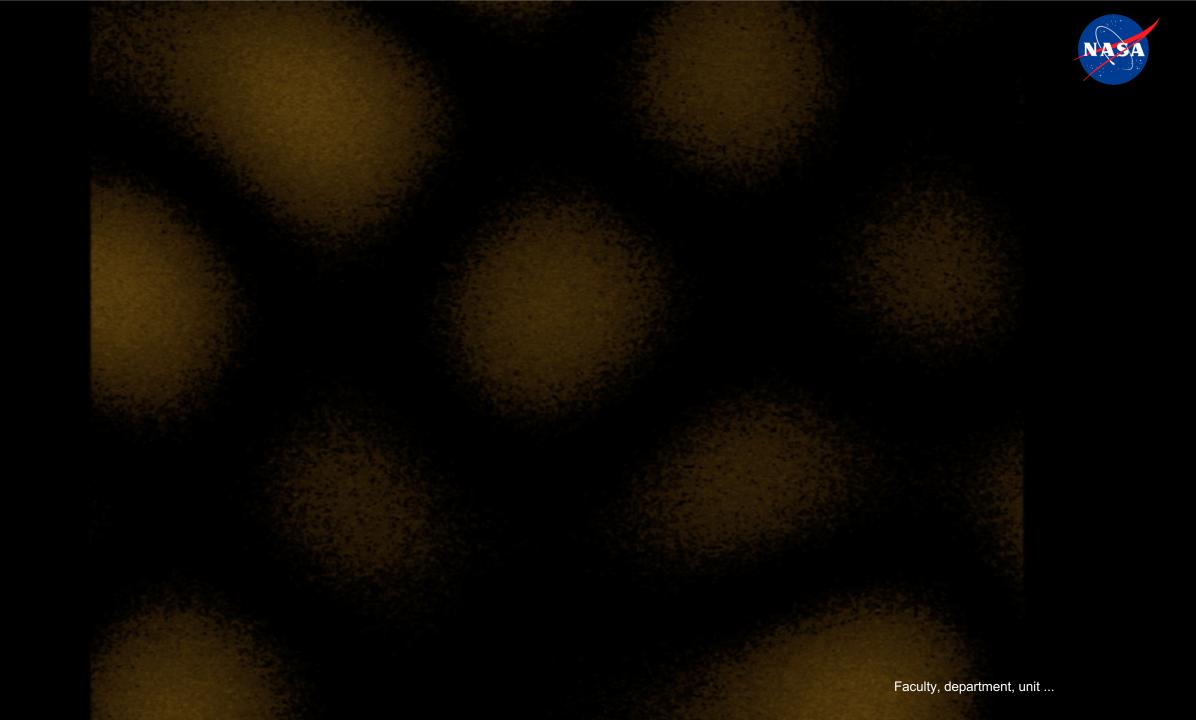

Past Experience – Tier 0

- **11th call and 12th**: Particle acceleration by magnetic reconnection in turbulence
 - BSC
 - Technical: Fully Complying with the system
 - Scientific: 6, 6, 5
- 14th call: KARMA Kinetic models of magnetic reconnection in pARtially ionised plasMAs
 - BSC
 - Technical: Fully Complying with the system
 - Scientific: 6, 6, 3
- 17th call: TAPES Turbulence in Astrophysical Plasmas from fluid to Electron Scales
 - LRZ
 - Technical: Suitable for the system
 - Scientific: 6, 6, 5



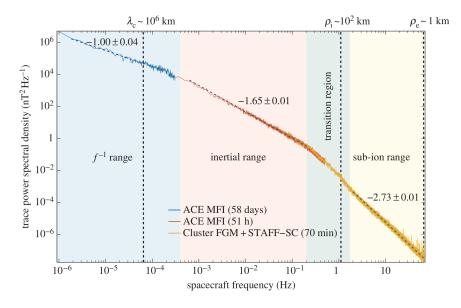

17th call: TAPES - Turbulence in Astrophysical Plasmas from fluid to Electron Scales

LRZ – 35 million hours



Plasma and Turbulence

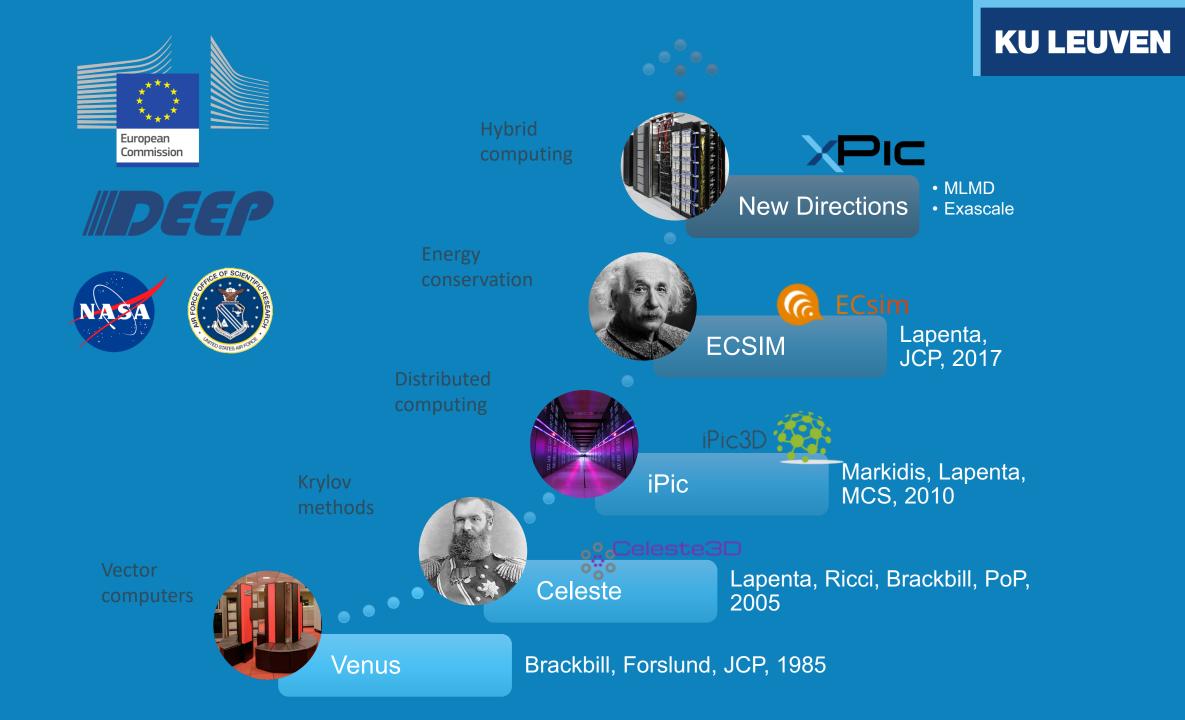
KU LEUVEN

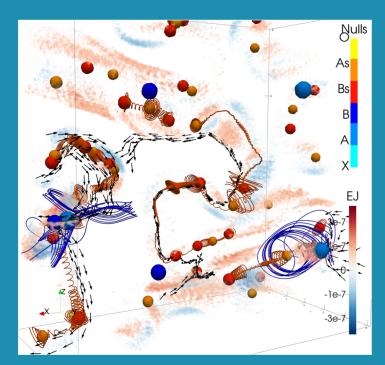

Turbulence in space plasmas

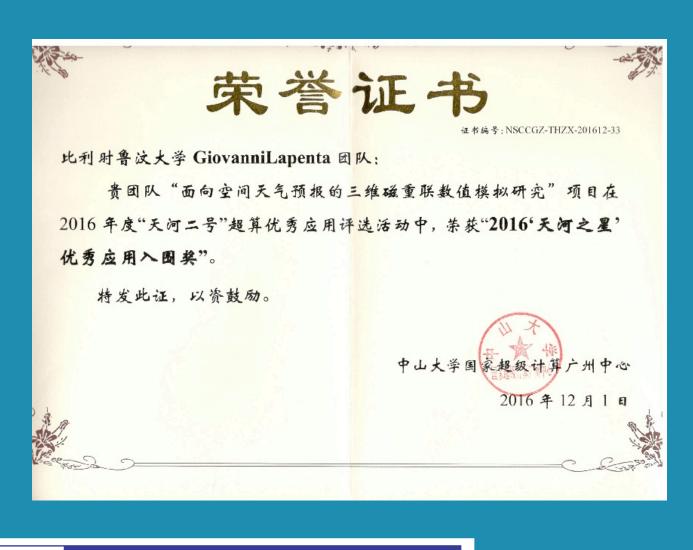
CONTEXT

- Turbulence is ubiquitous is space plasmas (heliosphere, galaxies, supernova remnants)
- Turbulence is studied by means of numerical simulation. The challenge consists in simulating a broad range of scales.

SCIENTIFIC JUSTIFICATION


• Turbulence is relevant to understand key phenomena like particle energization and diffusion, and magnetic reconnection

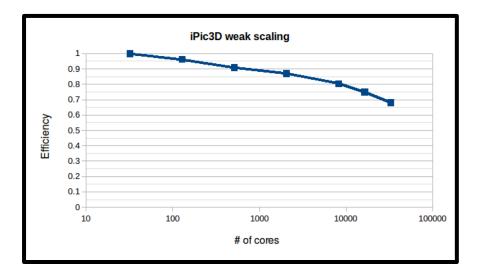

Several order of magnitude separate the injection and the dissipation range


COMMUNITY OUTCOME

 Turbulence is a key topic for several space missions (MMS, PSP and SO)

nature physics

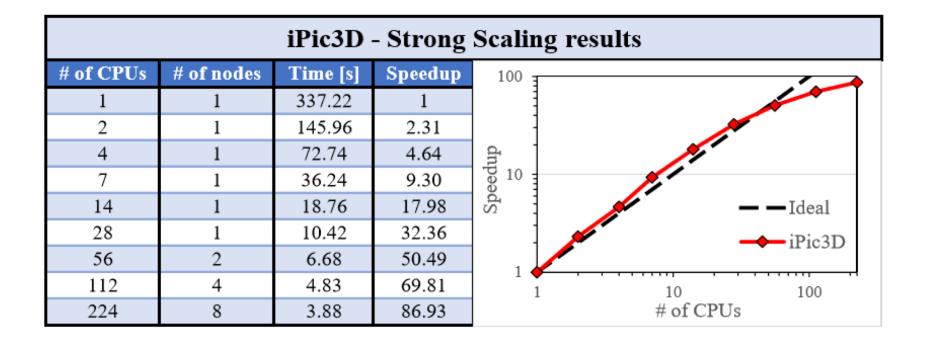
ARTICLES PUBLISHED ONLINE: 20 JULY 2015 | DOI: 10.1038/NPHYS3406


KU LEUVEN

Secondary reconnection sites in reconnectiongenerated flux ropes and reconnection fronts

Giovanni Lapenta^{1*}, Stefano Markidis², Martin V. Goldman³ and David L. Newman³

iPic3D weak scaling


# of cores	Time [s]	Efficiency	Topology	
32	53.34	1	4x4x2	
128	55.45	0.96	8x4x4	
512	58.64	0.90	8x8x8	
2048	61.24	0.87	16x16x8	
8192	66.35	0.80	32x16x16	
16384	71.14	0.75	32x32x16	
32768	78.42	0.68	32x32x32	

- iPic3D weak scaling has been tested on SuperMUC
- Initial set-up: 3D Harris current sheet configuration with 4 species and <u>125 particles per species per</u> cell was used. The code was run for 100 cycles with a fixed time step. The output was suppressed.
- 75% efficiency up to 16k cores, 68% efficiency for 32k cores.
- The efficiency increases with more particles per cell.

iPic3D strong scaling

Our Proposal: Turbulence in Astrophysical Plasmas from fluid to Electron scale (TAPES)

• We have proposed a numerical method that allows to span a broad range of the turbulent cascade. The method is implemented in the code iPic3D. A simulation campaign will be conducted varying the range of scale resolved (varying the mass ratio)

Run Type	# Runs	# of cycles/ run	duration/ iteration/ cell (micro sec)	# cores (estimated)	Total core hours (10 ⁶)/run	Total core hours (10 ⁶)/ type run	
MR64	10	9000	2	896	0.02	0.2	
MR128	10	18000	2	3584	0.4	4.0	
MR256	3	36000	2	14336	10.8	32.4	
Total						36.6	

 We start with small simulation to establish the best parameters. Then, we run three big simulations at the highest resolution allowed by present computational resources

TAPES: Gantt chart and collaboration

Work Package	MONTHS											
	I	Ш	III	IV	v	VI	VII	VIII	IX	X	XI	XII
WP1												
WP2												
WP3												
Milestones												

WP1: small simulations (MR64, MR128) for a total of 5mln hours, **WP2**: large simulations (MR256) for a total of 30mln hours, **WP3**: data analysis

Two groups are involved in the project:

- KU Leuven (7 members). Tasks: decide parameters, running simulation, fetching the data, post-processing and analysis of data.
- University of Calabria (2 members). Tasks: analysis of data, theoretical support to the study of turbulent phenomena.

Questions from the reviewers and answers

- The referees' reports were all very positive. The three scores were 5, 6, 6 on a scale of 1 to 6.
- A few (minor) comments were raised

Reviewer 1

Q: Not using realistic mass ratio

A: Simulations with realistic mass ratio are not currently feasible. The reduced mass ratio we will use will provide the necessary scale separation required to address the key topics in plasma turbulence described in the proposal. Also, as a by-product, as the reviewer recognizes, the present study will enable to clarify the role of using reduced mass ratio in simulations of plasma turbulence .

Reviewer 2

Q: Not clear the connection with the space missions and the role of each member of the team inside the project

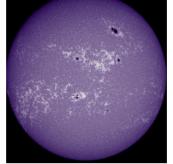
A: We proved the involvement of team members with the space mission PSP and SO and clarified the role of each member assigning individual tasks

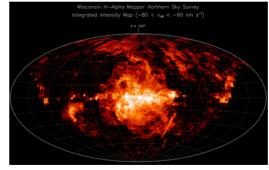
14th Call: KARMA: Kinetic models of magnetic reconnection in partially ionised plasmas Project Description

Magnetic reconnection is a process which converts magnetic energy into kinetic energy and heat in a variety of astrophysical and laboratory environments.

Many of these environments are partially ionised (i.e., not all the gas has been heated-up into plasma), but partial ionisation is rarely included as an ingredient in reconnection simulation.

We address kinetic reconnection in a partially ionised environment via a fully kinetic Particle In Cell approach which includes a Monte Carlo operator for collisions with background gas




protostellar/planet brown ary disks atmos

brown dwarf atmosphere

interstellar clouds

ionosphere

solar chromosphere

warm interstellar medium

tokamak breakdown phase

PRACE Project Preparation: review process

Main reviewers' concerns (6,6,3) and our replies:

"the proposal is quite novel, but I am not convinced that it will be a game changer"

we commented on the role of partial ionisation in affecting the transition between slow and fast reconnection, supported by independent literature

"The methodology is appropriate with the following caveat: the PIC algorithm is intrinsically noisy. This numerical noise has some similar effects to physics collisions, but it is, of course, completely artificial. Can the authors guarantee that the new physics that they expect their simulations to reveal will be unequivocally attributable to the "real" collisions between ions/electrons and the neutral background, rather than simply the effect of the numerical noise of the algorithm? "

we commented on the established techniques used in the code to control numerical noise and on our long experience with dealing with numerical noise in PIC simulations